Conducting ITO Nanoparticle-Based Aerogels—Nonaqueous One-Pot Synthesis vs. Particle Assembly Routes

Author:

Sang Bastian Samira1ORCID,Rechberger Felix2,Zellmer Sabrina13,Niederberger Markus2ORCID,Garnweitner Georg14ORCID

Affiliation:

1. Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany

2. Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland

3. Fraunhofer Institute for Surface Engineering and Thin Films (IST), Bienroder Weg 54E, 38108 Braunschweig, Germany

4. Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, Langer Kamp 6A, 38106 Braunschweig, Germany

Abstract

Indium tin oxide (ITO) aerogels offer a combination of high surface area, porosity and conductive properties and could therefore be a promising material for electrodes in the fields of batteries, solar cells and fuel cells, as well as for optoelectronic applications. In this study, ITO aerogels were synthesized via two different approaches, followed by critical point drying (CPD) with liquid CO2. During the nonaqueous one-pot sol–gel synthesis in benzylamine (BnNH2), the ITO nanoparticles arranged to form a gel, which could be directly processed into an aerogel via solvent exchange, followed by CPD. Alternatively, for the analogous nonaqueous sol–gel synthesis in benzyl alcohol (BnOH), ITO nanoparticles were obtained and assembled into macroscopic aerogels with centimeter dimensions by controlled destabilization of a concentrated dispersion and CPD. As-synthesized ITO aerogels showed low electrical conductivities, but an improvement of two to three orders of magnitude was achieved by annealing, resulting in an electrical resistivity of 64.5–1.6 kΩ·cm. Annealing in a N2 atmosphere led to an even lower resistivity of 0.2–0.6 kΩ·cm. Concurrently, the BET surface area decreased from 106.2 to 55.6 m2/g with increasing annealing temperature. In essence, both synthesis strategies resulted in aerogels with attractive properties, showing great potential for many applications in energy storage and for optoelectronic devices.

Funder

Swiss National Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3