Tuning the Electronic Structure of a Novel 3D Architectured Co-N-C Aerogel to Enhance Oxygen Evolution Reaction Activity

Author:

Ni Chunsheng1,Huang Shuntian1,Koudama Tete Daniel1,Wu Xiaodong1ORCID,Cui Sheng1,Shen Xiaodong1,Chen Xiangbao2

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

2. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

Abstract

Hydrogen generation through water electrolysis is an efficient technique for hydrogen production, but the expensive price and scarcity of noble metal electrocatalysts hinder its large-scale application. Herein, cobalt-anchored nitrogen-doped graphene aerogel electrocatalysts (Co-N-C) for oxygen evolution reaction (OER) are prepared by simple chemical reduction and vacuum freeze-drying. The Co (0.5 wt%)-N (1 wt%)-C aerogel electrocatalyst has an optimal overpotential (0.383 V at 10 mA/cm2), which is significantly superior to that of a series of M-N-C aerogel electrocatalysts prepared by a similar route (M = Mn, Fe, Ni, Pt, Au, etc.) and other Co-N-C electrocatalysts that have been reported. In addition, the Co-N-C aerogel electrocatalyst has a small Tafel slope (95 mV/dec), a large electrochemical surface area (9.52 cm2), and excellent stability. Notably, the overpotential of Co-N-C aerogel electrocatalyst at a current density of 20 mA/cm2 is even superior to that of the commercial RuO2. In addition, density functional theory (DFT) confirms that the metal activity trend is Co-N-C > Fe-N-C > Ni-N-C, which is consistent with the OER activity results. The resulting Co-N-C aerogels can be considered one of the most promising electrocatalysts for energy storage and energy saving due to their simple preparation route, abundant raw materials, and superior electrocatalytic performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Key Laboratory of Advanced Functional Composites Technology, China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3