Musical Emotions Recognition Using Entropy Features and Channel Optimization Based on EEG

Author:

Xie Zun,Pan Jianwei,Li Songjie,Ren Jing,Qian Shao,Ye Ye,Bao Wei

Abstract

The dynamic of music is an important factor to arouse emotional experience, but current research mainly uses short-term artificial stimulus materials, which cannot effectively awaken complex emotions and reflect their dynamic brain response. In this paper, we used three long-term stimulus materials with many dynamic emotions inside: the “Waltz No. 2” containing pleasure and excitement, the “No. 14 Couplets” containing excitement, briskness, and nervousness, and the first movement of “Symphony No. 5 in C minor” containing passion, relaxation, cheerfulness, and nervousness. Approximate entropy (ApEn) and sample entropy (SampEn) were applied to extract the non-linear features of electroencephalogram (EEG) signals under long-term dynamic stimulation, and the K-Nearest Neighbor (KNN) method was used to recognize emotions. Further, a supervised feature vector dimensionality reduction method was proposed. Firstly, the optimal channel set for each subject was obtained by using a particle swarm optimization (PSO) algorithm, and then the number of times to select each channel in the optimal channel set of all subjects was counted. If the number was greater than or equal to the threshold, it was a common channel suitable for all subjects. The recognition results based on the optimal channel set demonstrated that each accuracy of two categories of emotions based on “Waltz No. 2” and three categories of emotions based on “No. 14 Couplets” was generally above 80%, respectively, and the recognition accuracy of four categories based on the first movement of “Symphony No. 5 in C minor” was about 70%. The recognition accuracy based on the common channel set was about 10% lower than that based on the optimal channel set, but not much different from that based on the whole channel set. This result suggested that the common channel could basically reflect the universal features of the whole subjects while realizing feature dimension reduction. The common channels were mainly distributed in the frontal lobe, central region, parietal lobe, occipital lobe, and temporal lobe. The channel number distributed in the frontal lobe was greater than the ones in other regions, indicating that the frontal lobe was the main emotional response region. Brain region topographic map based on the common channel set showed that there were differences in entropy intensity between different brain regions of the same emotion and the same brain region of different emotions. The number of times to select each channel in the optimal channel set of all 30 subjects showed that the principal component channels representing five brain regions were Fp1/F3 in the frontal lobe, CP5 in the central region, Pz in the parietal lobe, O2 in the occipital lobe, and T8 in the temporal lobe, respectively.

Funder

University Synergy Innovation Program of Anhui Province

Natural Science Key Foundation of Anhui Provincial Education Department of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3