Microstructure and Abrasive Wear Resistance of Metal Matrix Composite Coatings Deposited on Steel Grade AISI 4715 by Powder Plasma Transferred Arc Welding Part 2. Mechanical and Structural Properties of a Nickel-Based Alloy Surface Layer Reinforced with Particles of Tungsten Carbide and Synthetic Metal–Diamond Composite

Author:

Czupryński ArturORCID

Abstract

The article is the continuation of a cycle of works published in a Special Issue of MDPI entitled “Innovative Technologies and Materials for the Production of Mechanical, Thermal and Corrosion Wear-Resistant Surface Layers and Coatings” related to tests concerning the microstructure and mechanical properties of innovative surface layers made using the Powder Plasma Transferred Arc Welding (PPTAW) method and intended for work surfaces of drilling tools and machinery applied in the extraction industry. A layer subjected to tests was a metal matrix composite, made using powder based on a nickel alloy containing spherical fused tungsten carbide (SFTC) particles, which are fused tungsten carbide (FTC) particles and spherical particles of tungsten-coated synthetic metal–diamond composite (PD-W). The layer was deposited on the substrate of low-alloy structural steel grade AISI 4715. The results showed that the chemical composition of the metallic powder as well as the content of the hard phase constituting the matrix enabled the making of a powder filler material characterised by very good weldability and appropriate melting. It was also found that the structure of the Ni-WC-PD-W layer was complex and that proper claddings (characterised by the uniform distribution of tungsten carbide (WC)) were formed in relation to specific cladding process parameters. In addition, the structure of the composite layer revealed the partial thermal and structural decomposition of tungsten carbide, while the particles of the synthetic metal–diamond composite remained coherent. The deposited surface layer was characterised by favourable resistance to moderate dynamic impact loads with a potential energy of 200 J, yet at the same time, by over 12 times lower metal–mineral abrasive wear resistance than the previously tested surface layer made of cobalt-based composite powder, the matrix of which contained the hard phase composed of TiC particles and synthetic metal–diamond composite. The lower abrasive wear resistance could result from a different mechanism responsible for the hardening of the spherical particles of the hard phase susceptible to separation from the metal matrix, as well as from a different mechanism of tribological wear.

Funder

The Silesian University of Technology Rector’s habilitation grant

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. Microstructural Characteristic of N2 Shielding Gas in Coating FeCrC Composite to the Surface of AISI 1030 Steel with PTA Method

2. Selected Properties of Hardfacing Layers Created by PTA Technology

3. Composite coatings deposited by the plasma transferred arc—Characterization and coating formation;Bober;Weld. Technol. Rev.,2011

4. Research on the Properties of Co-Tic and Ni-Tic Hip-Sintered Alloys

5. Transition Metal Carbides and Nitrides;Toth,1971

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3