Chitosan-Coated Halloysite Nanotubes As Vehicle for Controlled Drug Delivery to MCF-7 Cancer Cells In Vitro

Author:

Nyankson EmmanuelORCID,Aboagye Shadrack O.,Efavi Johnson Kwame,Agyei-Tuffour BenjaminORCID,Paemka Lily,Asimeng Bernard O.,Balapangu Srinivasan,Arthur Patrick K.ORCID,Tiburu Elvis K.ORCID

Abstract

The aim of the work is to improve the release properties of curcumin onto human breast cancer cell lines using coated halloysite nanotubes (HNTs) with chitosan as a polycation. A loading efficiency of 70.2% (w/w) was attained for loading 4.9 mg of the drug into 0.204 g bed volume of HNTs using the vacuum suction method. Results acquired from Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron spectroscopy (SEM), zeta potential, and thermogravimetric analysis (TGA) indicated the presence of the drug and the biopolymer in and around the nanotubes. The release properties of drug-loaded HNTs (DLHNTs) and chitosan-coated drug-loaded HNTs (DLHNTs-CH) were evaluated. The release percentages of DLHNTs and DLHNTs-CH after 6 h were 50.7 and 37%, respectively. Based on the correlation coefficients obtained by fitting the release nature of curcumin from the two samples, the Korsmeyer-Peppas model was found to be the best-fitted model. In vitro cell viability studies were carried out on the human breast cancer cell line MCF-7, using the MTT and trypan blue exclusion assays. Prior to the Trypan blue assay, the IC50 of curcumin was determined to be ~30 µM. After 24 h of incubation, the recorded cell viability values were 94, 68, 57, and 51% for HNTs, DLHNTs-CH, DLHNTs, and curcumin, respectively. In comparison to the release studies, it could be deducted that sustained lethal doses of curcumin were released from the DLHNTs-CH within the same time. It is concluded from this work that the “burst release” of naked drugs could be slowly administered using chitosan-coated HNTs as potential drug carriers.

Publisher

MDPI AG

Subject

General Materials Science

Reference47 articles.

1. World Cancer Report 2014;Wild,2014

2. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All,2020

3. Risk determination and prevention of breast cancer

4. Clinicians’ experiences and perspectives of breast cancer and possible integration of breast cancer prevention and early detection into palliative care

5. Elements of Human Cancer;Cooper,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3