Refractory Metal Coated Alumina Foams as Support Material for Stem Cell and Fibroblasts Cultivation

Author:

Hasemann Georg,Betke UlfORCID,Krüger ManjaORCID,Walles Heike,Scheffler Michael

Abstract

Ceramics are widely used as implant materials; however, they are brittle and may emit particles when used in these applications. To overcome this disadvantage, alumina foams, which represent a 3D cellular structure comparable to that of human trabecular bone structures, were sputter coated with platinum, tantalum or titanium and modified with fibronectin or collagen type I, components of the extracellular matrix (ECM). To proof the cell material interaction, the unmodified and modified materials were cultured with (a) mesenchymal stem cells being a perfect indicator for biocompatibility and releasing important cytokines of the stem cell niche and (b) with fibroblasts characterized as mediators of inflammation and therefore an important cellular component of the foreign body reaction and inflammation after implantation. To optimize and compare the influence of metal surfaces on cellular behavior, planar glass substrates have been used. Identified biocompatible metal surface of platinum, titanium and tantalum were sputtered on ceramic foams modified with the above-mentioned ECM components to investigate cellular behavior in a 3D environment. The cellular alumina support was characterized with respect to its cellular/porous structure and niche accessibility and coating thickness of the refractory metals; the average cell size was 2.3 mm, the average size of the cell windows was 1.8 mm, and the total foam porosity was 91.4%. The Pt, Ti and Ta coatings were completely dense covering the entire alumina foam surface. The metals titanium and tantalum were colonized very well by the stem cells without a coating of ECM components, whereas the fibroblasts preferred components of the ECM on the alumina foam surface.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3