Quantitative Analysis of the Recovery Process in Pure Iron Using X-ray Diffraction Line Profile Analysis

Author:

Sugiyama Shota,Ogawa Toshio,He Lei,Wang Zhilei,Adachi Yoshitaka

Abstract

We conducted quantitative analysis of the recovery process during pure iron annealing using the modified Williamson-Hall and Warren-Averbach methods. We prepared four types of specimens with different dislocation substructures. By increasing the annealing temperature, we confirmed a decrease in dislocation density. In particular, screw-dislocation density substantially decreased in the early stage of the recovery process, while edge-dislocation density gradually decreased as annealing temperature increased. Moreover, changes in hardness during the recovery process mainly depended on edge-dislocation density. Increases in annealing temperature weakly affected the dislocation arrangement parameter and crystallite size. Recovery-process modeling demonstrated that the decrease in screw-dislocation density during the recovery process was mainly dominated by glide and/or cross-slip with dislocation core diffusion. In contrast, the decrease in edge-dislocation density during the recovery process was governed by a climbing motion with both dislocation core diffusion and lattice self-diffusion. From the above results, we succeeded in quantitatively distinguishing between edge- and screw-dislocation density during the recovery process, which are difficult to distinguish using transmission electron microscope and electron backscatter diffraction.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3