Abstract
The effect of high emissivity coatings on the radiative heat transfer in steam cracking furnaces is far from understood. To start, there is a lack of experimental data describing the emissive properties of the materials encountered in steam cracking furnaces. Therefore, spectral normal emissivity measurements are carried out, evaluating the emissive properties of refractory firebricks before and after applying a high emissivity coating at elevated temperatures. The emissive properties are enhanced significantly after applying a high emissivity coating. Pilot unit steam cracking experiments show a 5% reduction in fuel gas firing rate after applying a high emissivity coating on the refractory of the cracking cells. A parametric study, showing the effect of reactor coil and furnace wall emissive properties on the radiative heat transfer inside a tube-in-box geometry, confirms that a non-gray gas model is required to accurately model the behavior of high emissivity coatings. Even though a gray gas model suffices to capture the heat sink behavior of a reactor coil, a non-gray gas model that is able to account for the absorption and re-emission in specific bands is necessary to accurately model the benefits of applying a high emissivity coating on the furnace wall.
Funder
Horizon 2020 Framework Programme
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献