A Method for Merging Multi-Source Daily Satellite Precipitation Datasets and Gauge Observations over Poyang Lake Basin, China

Author:

Zhao Na123ORCID

Affiliation:

1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China

3. Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing 210023, China

Abstract

Obtaining precipitation estimates with high resolution and high accuracy is critically important for regional meteorological, hydrological, and other applications. Although satellite precipitation products can provide precipitation fields at various scales, their applications are limited by the relatively coarse spatial resolution and low accuracy. In this study, we propose a multi-source merging approach for generating accurate and high-resolution precipitation fields on a daily time scale. Specifically, a random effects eigenvector spatial filtering (RESF) method was first applied to downscale satellite precipitation datasets. The RESF method, together with Kriging, was then applied to merge the downscaled satellite precipitation products with station observations. The results were compared against observations and a data fusion dataset, the Multi-Source Weighted-Ensemble Precipitation (MSWEP). It was shown that the estimates of the proposed method significantly outperformed the individual satellite precipitation product, reducing the average value of mean absolute error (MAE) by 52%, root mean square error (RMSE) by 63%, and improving the mean value of Kling–Gupta efficiency (KGE) by 157%, respectively. Daily precipitation estimates exhibited similar spatial patterns to the MSWEP products, and were more accurate in almost all cases, with a 42% reduction in MAE, 46% reduction in RMSE, and 79% improvement in KGE. The proposed approach provides a promising solution to generate accurate daily precipitation fields with high spatial resolution.

Funder

Major Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3