Delineation of Orchard, Vineyard, and Olive Trees Based on Phenology Metrics Derived from Time Series of Sentinel-2

Author:

Abubakar Mukhtar Adamu12ORCID,Chanzy André1ORCID,Flamain Fabrice1,Pouget Guillaume1,Courault Dominique1ORCID

Affiliation:

1. 1114 UMR INRAE-Avignon University EMMAH, Domaine St. Paul, 84914 Avignon, France

2. Agronomy Department, Faculty of Agriculture, Shabu-Lafia Campus, Nasarawa State University, Keffi 961101, Nigeria

Abstract

This study aimed to propose an accurate and cost-effective analytical approach for the delineation of fruit trees in orchards, vineyards, and olive groves in Southern France, considering two locations. A classification based on phenology metrics (PM) derived from the Sentinel-2 time series was developed to perform the classification. The PM were computed by fitting a double logistic model on temporal profiles of vegetation indices to delineate orchard and vineyard classes. The generated PM were introduced into a random forest (RF) algorithm for classification. The method was tested on different vegetation indices, with the best results obtained with the leaf area index. To delineate the olive class, the temporal features of the green chlorophyll vegetation index were found to be the most appropriate. Obtained overall accuracies ranged from 89–96% and a Kappa of 0.86–0.95 (2016–2021), respectively. These accuracies are much better than applying the RF algorithm to the LAI time series, which led to a Kappa ranging between 0.3 and 0.52 and demonstrates the interest in using phenological traits rather than the raw time series of the remote sensing data. The method can be well reproduced from one year to another. This is an interesting feature to reduce the burden of collecting ground-truth information. If the method is generic, it needs to be calibrated in given areas as soon as a phenology shift is expected.

Funder

Petroleum Technology Development Fund

INRAE-EMMAH Avignon

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3