Analysis of Geotagging Behavior: Do Geotagged Users Represent the Twitter Population?

Author:

Karami AmirORCID,Kadari Rachana Redd,Panati Lekha,Nooli Siva Prasad,Bheemreddy Harshini,Bozorgi Parisa

Abstract

Twitter’s APIs are now the main data source for social media researchers. A large number of studies have utilized Twitter data for diverse research interests. Twitter users can share their precise real-time location, and Twitter APIs can provide this information as longitude and latitude. These geotagged Twitter data can help to study human activities and movements for different applications. Compared to the mostly small-scale data samples in different domains, such as social science, collecting geotagged data offers large samples. There is a fundamental question whether geotagged users can represent non-geotagged users. While some studies have investigated the question from different perspectives, they did not investigate profile information and the contents of tweets of geotagged and non-geotagged users. This empirical study addresses this limitation by applying text mining, statistical analysis, and machine learning techniques on Twitter data comprising more than 88,000 users and over 170 million tweets. Our findings show that there is a significant difference (p-value < 0.001) between geotagged and non-geotagged users based on 73% of the features obtained from the users’ profiles and tweets. The features can also help to distinguish between geotagged and non-geotagged users with around 80% accuracy. This research illustrates that geotagged users do not represent the Twitter population.

Funder

Office of the Vice President for Research, University of South Carolina

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference74 articles.

1. Twitter by the Numbers: Stats, Demographics & Fun Factshttps://www.omnicoreagency.com/twitter-statistics/#:~:text=Twitter%20Demographics&text=There%20are%20262%20million%20International,users%20have%20higher%20college%20degrees.

2. Twitter: Number of Monthly Active U.S. Users 2010–2019https://www.statista.com/statistics/274564/monthly-active-twitter-users-in-the-united-states/

3. Twitter and Research: A Systematic Literature Review Through Text Mining

4. Building a National Neighborhood Dataset From Geotagged Twitter Data for Indicators of Happiness, Diet, and Physical Activity

5. Identifying and Analyzing Health-Related Themes in Disinformation Shared by Conservative and Liberal Russian Trolls on Twitter

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3