Exploring the Spatiotemporal Patterns of Residents’ Daily Activities Using Text-Based Social Media Data: A Case Study of Beijing, China

Author:

Liu JianORCID,Meng Bin,Wang Juan,Chen Siyu,Tian Bin,Zhi Guoqing

Abstract

The use of social media data provided powerful data support to reveal the spatiotemporal characteristics and mechanisms of human activity, as it integrated rich spatiotemporal and textual semantic information. However, previous research has not fully utilized its semantic and spatiotemporal information, due to its technical and algorithmic limitations. The efficiency of the deep mining of textual semantic resources was also low. In this research, a multi-classification of text model, based on natural language processing technology and the Bidirectional Encoder Representations from Transformers (BERT) framework is constructed. The residents’ activities in Beijing were then classified using the Sina Weibo data in 2019. The results showed that the accuracy of the classifications was more than 90%. The types and distribution of residents’ activities were closely related to the characteristics of the activities and holiday arrangements. From the perspective of a short timescale, the activity rhythm on weekends was delayed by one hour as compared to that on weekdays. There was a significant agglomeration of residents’ activities that presented a spatial co-location cluster pattern, but the proportion of balanced co-location cluster areas was small. The research demonstrated that location conditions, especially the microlocation condition (the distance to the nearest subway station), were the driving factors that affected the resident activity cluster patterns. In this research, the proposed framework integrates textual semantic analysis, statistical method, and spatial techniques, broadens the application areas of social media data, especially text data, and provides a new paradigm for the research of residents’ activities and spatiotemporal behavior.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Academic Research Projects of Beijing Union University

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3