Wildland Fire Susceptibility Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference System-Based Whale Optimization Algorithm and Simulated Annealing

Author:

Al-Fugara A’kifORCID,Mabdeh Ali Nouh,Ahmadlou Mohammad,Pourghasemi Hamid RezaORCID,Al-Adamat RidaORCID,Pradhan BiswajeetORCID,Al-Shabeeb Abdel Rahman

Abstract

Fires are one of the most destructive forces in natural ecosystems. This study aims to develop and compare four hybrid models using two well-known machine learning models, support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS), as well as two meta-heuristic models, the whale optimization algorithm (WOA) and simulated annealing (SA) to map wildland fires in Jerash Province, Jordan. For modeling, 109 fire locations were used along with 14 relevant factors, including elevation, slope, aspect, land use, normalized difference vegetation index (NDVI), rainfall, temperature, wind speed, solar radiation, soil texture, topographic wetness index (TWI), distance to drainage, and population density, as the variables affecting the fire occurrence. The area under the receiver operating characteristic (AUROC) was used to evaluate the accuracy of the models. The findings indicated that SVR-based hybrid models yielded a higher AUROC value (0.965 and 0.949) than the ANFIS-based hybrid models (0.904 and 0.894, respectively). Wildland fire susceptibility maps can play a major role in shaping firefighting tactics.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3