Nanoscale Three-Dimensional Imaging of Integrated Circuits Using a Scanning Electron Microscope and Transition-Edge Sensor Spectrometer

Author:

Nakamura Nathan12ORCID,Szypryt Paul12ORCID,Dagel Amber L.3ORCID,Alpert Bradley K.1,Bennett Douglas A.1,Doriese William Bertrand1ORCID,Durkin Malcolm12,Fowler Joseph W.12ORCID,Fox Dylan T.3,Gard Johnathon D.12,Goodner Ryan N.3,Harris James Zachariah3,Hilton Gene C.1,Jimenez Edward S.3,Kernen Burke L.3,Larson Kurt W.3,Levine Zachary H.4ORCID,McArthur Daniel3,Morgan Kelsey M.12,O’Neil Galen C.1ORCID,Ortiz Nathan J.12,Pappas Christine G.12,Reintsema Carl D.1,Schmidt Daniel R.1,Schultz Peter A.3ORCID,Thompson Kyle R.3,Ullom Joel N.12,Vale Leila1,Vaughan Courtenay T.3,Walker Christopher3,Weber Joel C.12,Wheeler Jason W.3,Swetz Daniel S.1ORCID

Affiliation:

1. National Institute of Standards and Technology, Boulder, CO 80305, USA

2. Department of Physics, University of Colorado, Boulder, CO 80309, USA

3. Sandia National Laboratories, Albuquerque, NM 87123, USA

4. National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Abstract

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot on a metal target held micrometers away from the sample of interest, while the TES spectrometer isolates target photons with a high signal-to-noise ratio. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enables nanoscale, element-specific X-ray imaging in a compact footprint. The proof of concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in six layers of a Cu-SiO2 integrated circuit, and a path toward finer resolution and enhanced imaging capabilities is discussed.

Funder

Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity

National Research Council Postdoctoral Fellowships

U.S. Department of Commerce, National Institute of Standards and Technology

Publisher

MDPI AG

Reference55 articles.

1. Fast X-ray nanotomography with sub-10 nm resolution as a powerful imaging tool for nanotechnology and energy storage applications;Nikitin;Adv. Mater.,2021

2. High-resolution non-destructive three-dimensional imaging of integrated circuits;Holler;Nature,2017

3. (2023, October 20). International Technology Roadmap for Semiconductors—ITRS 2.0. Available online: http://www.itrs2.net/.

4. X-ray computed tomography;Withers;Nat. Rev. Methods Prim.,2021

5. Applications of full-field transmission X-ray nanotomography and X-ray nanospectroscopy at Stanford Synchrotron Radiation Lightsource;Bare;Microsc. Microanal.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3