Free-Living and Particle-Associated Microbial Communities of Lake Baikal Differ by Season and Nutrient Intake

Author:

Bashenkhaeva Maria1ORCID,Yeletskaya Yelena1,Tomberg Irina1ORCID,Marchenkov Artyom1ORCID,Titova Lubov1ORCID,Galachyants Yuri1

Affiliation:

1. Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, 664033 Irkutsk, Russia

Abstract

In an aquatic ecosystem, the supply of nutrients is essential for the biogeochemical cycle, and it affects the taxonomic composition of the microbial communities. Here, by using high-throughput sequencing (HTS) of the 16S and 18S rRNA gene fragments, we compared free-living (FL) and particle-associated (PA) bacterial communities and microeukaryotic communities in the areas with different nutrient intakes in freshwater Lake Baikal during the ice-covered and summer periods. Samples were taken at the inflow of the Selenga River, which is the main tributary of the lake, and at several established coastal research stations. The metabolic potential of the bacterial communities was predicted using PICRUSt. Differences were found in both FL and PA communities of the river mouth compared to the photic zone of the lake. The composition of FL communities was significantly different between the sampling sites in the ice-covered period, which is most likely influenced by different hydrochemical conditions. In contrast, the PA communities were more similar during the ice-covered period, but they changed considerably from spring to summer and their diversity increased. The diversity of the microeukaryotic communities also increased in summer, which may have contributed to the increase in bacterial diversity. In co-occurrence networks analysis, the number of interconnected bacterial OTUs in FL exceeded those for PA. The FL communities were dominated by Actinobacteriota, while the major PA OTUs belonged to a mixed cluster, which were mainly assigned to the phyla Bacteroidota and Verrucomicrobiota. As a result, PA communities were enriched in pathways responsible for the metabolism of sulfur, fucose, cellulose and urea. Our results confirm the difference between the FL and PA bacterial communities in Lake Baikal. These results also highlight the complex pattern of interactions between bacteria and microeukaryotes in a natural freshwater ecosystem across spatial and temporal scales.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3