Design Optimization of Lattice Structures under Compression: Study of Unit Cell Types and Cell Arrangements

Author:

Park Kwang-MinORCID,Min Kyung-Sung,Roh Young-SookORCID

Abstract

Additive manufacturing enables innovative structural design for industrial applications, which allows the fabrication of lattice structures with enhanced mechanical properties, including a high strength-to-relative-density ratio. However, to commercialize lattice structures, it is necessary to define the designability of lattice geometries and characterize the associated mechanical responses, including the compressive strength. The objective of this study was to provide an optimized design process for lattice structures and develop a lattice structure characterization database that can be used to differentiate unit cell topologies and guide the unit cell selection for compression-dominated structures. Linear static finite element analysis (FEA), nonlinear FEA, and experimental tests were performed on 11 types of unit cell-based lattice structures with dimensions of 20 mm × 20 mm × 20 mm. Consequently, under the same relative density conditions, simple cubic, octahedron, truncated cube, and truncated octahedron-based lattice structures with a 3 × 3 × 3 array pattern showed the best axial compressive strength properties. Correlations among the unit cell types, lattice structure topologies, relative densities, unit cell array patterns, and mechanical properties were identified, indicating their influence in describing and predicting the behaviors of lattice structures.

Funder

Infrastructure and Transportation Technology Promotion Research Program funded by the Ministry of Land Infrastructure and Transport of the Korean government

Publisher

MDPI AG

Subject

General Materials Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3