Characterization Methods along the Process Chain of Electrical Steel Sheet—From Best Practices to Advanced Characterization

Author:

Heller MartinORCID,Stöcker AnettORCID,Kawalla Rudolf,Leuning Nora,Hameyer Kay,Wei Xuefei,Hirt Gerhard,Böhm LucasORCID,Volk Wolfram,Korte-Kerzel SandraORCID

Abstract

Non-oriented (NO) electrical steel sheets find their application in rotating electrical machines, ranging from generators for wind turbines to motors for the transportation sector and small motors for kitchen appliances. With the current trend of moving away from fossil fuel-based energy conversion towards an electricity-based one, these machines become more and more important and, as a consequence, the leverage effect in saving energy by improving efficiency is huge. It is already well established that different applications of an electrical machine have individual requirements for the properties of the NO electrical steel sheets, which in turn result from the microstructures and textures thereof. However, designing and producing tailor-made NO electrical steel sheet is still challenging, because the complex interdependence between processing steps, the different phenomena taking place and the resulting material properties are still not sufficiently understood. This work shows how established, as well as advanced and newly developed characterization methods, can be used to unfold these intricate connections. In this context, the respective characterization methods are explained and applied to NO electrical steel as well as to the typical processing steps. In addition, several experimental results are reviewed to show the strengths of the different methods, as well as their (dis)advantages, typical applications and obtainable data.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3