Study on the Influence of Silica Fume (SF) on the Rheology, Fluidity, Stability, Time-Varying Characteristics, and Mechanism of Cement Paste

Author:

Liu Hengrui,Sun XiaoORCID,Wang Yao,Lu Xueying,Du Hui,Tian Zhenghong

Abstract

In this study, the rheology, fluidity, stability, and time-varying properties of cement paste with different substitute contents of silica fume (SF) were investigated. The result showed that the effects of SF on macro-fluidity and micro-rheological properties were different under different water–cement ratios. The addition of SF increased the yield stress and plastic viscosity in the range of 2.61–18.44% and 6.66–24.66%, respectively, and reduced the flow expansion in the range of 4.15–18.91%. The effect of SF on cement paste gradually lost its regularity as the w/c ratio increased. The SF can effectively improve the stability of cement paste, and the reduction range of bleeding rate was 0.25–4.3% under different water–cement ratios. The mathematical models of rheological parameters, flow expansion, and time followed the following equations: τ(t) = τ0 + k0t, η(t) = η0eat, and L(t) = L0 − k1t, L(t) = L0 − k1t − a1t2. The SF slowly increased the rheological parameters in the initial time period and reduced the degree of fluidity attenuation, but the effect was significantly enhanced after entering the accelerated hydration period. The mechanism of the above results was that SF mainly affected the fluidity and rheology of the paste through the effect of water film thickness. The small density of SF particles resulted in a low sedimentation rate in the initial suspended paste, which effectively alleviated the internal particle agglomeration effect and enhanced stability. The SF had a dilution effect and nucleation effect during hydration acceleration, and the increase of hydration products effectively increased the plastic viscosity.

Funder

National Natural Science Fund of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3