Investigation of Biocompatible PEO Coating Growth on cp-Ti with In Situ Spectroscopic Methods

Author:

Aubakirova Veta,Farrakhov RuzilORCID,Sharipov Arseniy,Polyakova VeronikaORCID,Parfenova LyudmilaORCID,Parfenov EvgenyORCID

Abstract

The problem of the optimization of properties for biocompatible coatings as functional materials requires in-depth understanding of the coating formation processes; this allows for precise manufacturing of new generation implantable devices. Plasma electrolytic oxidation (PEO) opens the possibility for the design of biomimetic surfaces for better biocompatibility of titanium materials. The pulsed bipolar PEO process of cp-Ti under voltage control was investigated using joint analysis of the surface characterization and by in situ methods of impedance spectroscopy and optical emission spectroscopy. Scanning electron microscopy, X-ray diffractometry, coating thickness, and roughness measurements were used to characterize the surface morphology evolution during the treatment for 5 min. In situ impedance spectroscopy facilitated the evaluation of the PEO process frequency response and proposed the underlying equivalent circuit where parameters were correlated with the coating layer properties. In situ optical emission spectroscopy helped to analyze the spectral line evolutions for the substrate material and electrolyte species and to justify a method to estimate the coating thickness via the relation of the spectral line intensities. As a result, the optimal treatment time was established as 2 min; this provides a 9–11 µm thick PEO coating with Ra 1 µm, 3–5% porosity, and containing 75% of anatase. The methods for in-situ spectral diagnostics of the coating thickness and roughness were justified so that the treatment time can be corrected online when the coating achieves the required properties.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3