Abstract
With the in-depth penetration of renewable energy in the shipboard power system, the uncertainty of its output power and the variability of sea conditions have brought severe challenges to the control of shipboard integrated power system. In order to provide additional accurate signals to the power control system to eliminate the influence of uncertain factors, this study proposed an adaptive kernel based online sequential extreme learning machine to accurately predict shipboard electric power fluctuation online. Three adaptive factors are introduced, which control the kernel function scale adaptively to ensure the accuracy and speed of the algorithm. The electric power fluctuation data of real-ship under two different sea conditions are used to verify the effectiveness of the algorithm. The simulation results clearly demonstrate that in the case of ship power fluctuation prediction, the proposed method can not only meet the rapidity demand of real-time control system, but also provide accurate prediction results.
Funder
Ministry of Industry and Information Technology of the People's Republic of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献