Adaptive Online Sequential Extreme Learning Machine with Kernels for Online Ship Power Prediction

Author:

Peng Xiuyan,Wang BoORCID,Zhang Lanyong,Su PengORCID

Abstract

With the in-depth penetration of renewable energy in the shipboard power system, the uncertainty of its output power and the variability of sea conditions have brought severe challenges to the control of shipboard integrated power system. In order to provide additional accurate signals to the power control system to eliminate the influence of uncertain factors, this study proposed an adaptive kernel based online sequential extreme learning machine to accurately predict shipboard electric power fluctuation online. Three adaptive factors are introduced, which control the kernel function scale adaptively to ensure the accuracy and speed of the algorithm. The electric power fluctuation data of real-ship under two different sea conditions are used to verify the effectiveness of the algorithm. The simulation results clearly demonstrate that in the case of ship power fluctuation prediction, the proposed method can not only meet the rapidity demand of real-time control system, but also provide accurate prediction results.

Funder

Ministry of Industry and Information Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3