Abstract
The power density of traction drives can be increased with advanced cooling systems or reduced losses. In induction machines with housing and shaft cooling, the produced heat in the stator and rotor winding system needs to be extracted over the rotor and stator lamination. The influence of soft magnetic material parameters, such as texture, thickness or alloy components on the magnetization and loss behavior, are well studied. Studies about influencing factors on the thermal conductivity are hard to find. Within this study, eight different soft magnetic materials are analyzed. An analytical approach is introduced to calculate the thermal conductivity. Temperature-dependent measurements of the electric resistivity are performed to obtain sufficient data for the analytical approach. An experimental approach is performed. The thermal diffusivity, density, and specific heat capacity are determined. An accuracy study of all measurements is performed. The analytical and the experimental approach show good agreement for all materials, except very thin specimens. The estimated measurement error of those specimens has high values. The simplified case study illustrates the significant influence of the different soft magnetic materials on the capability to extract the heat in the given application.
Funder
Bundesministerium für Wirtschaft und Energie
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献