Analyzing Regional and Local Changes in Irradiance during the 2019 Total Solar Eclipse in Chile, Using Field Observations and Analytical Modeling

Author:

Castillejo-Cuberos ArmandoORCID,Cardemil José MiguelORCID,Escobar Rodrigo

Abstract

Solar eclipses are astronomic phenomena in which the Earth’s moon transits between the planet and the Sun, projecting a shadow onto the planet’s surface. As solar power installed capacity increases, detailed studies of this region-wide phenomenon’s effect in irradiance is of interest; however, the literature mainly reports its effects on localized scales. A measurement campaign spanning over 1400 km was pursued for the 2 July 2019 total solar eclipse in Chile, to register the event and establish a modeling framework to assess solar eclipse effects in irradiance over wide regional scales. This work describes the event and presents an estimation framework to decompose atmospheric and eclipse effects on irradiance. An analytical model was applied to study irradiance attenuation throughout the Chilean mainland territory, using satellite-derived and astronomical data as inputs compared to ground measurements in eight stations. Results showed good agreement between model and observations, with Mean Bias Errors of −0.008 to 0.98 W/m2 for Global Horizontal Irradiance and −0.004 to −4.664 W/m2 for Direct Normal Irradiance, with Normalized Root Mean Squared Errors of 0.7–5.8% and 1.4–12.2%, respectively. Energy losses due to obscuration corresponded between 20–40% for Global Horizontal Irradiance and 25–50% for Direct Normal Irradiance over Chilean territory.

Funder

Corporación de Fomento de la Producción

Fondo Nacional de Desarrollo Científico y Tecnológico

Pontificia Universidad Católica de Chile

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Total or Hybrid Eclipses—Google Earth Files—Tuesday, 2 July 2019 in Chile or Argentinahttp://xjubier.free.fr/download/GE/en/TSE_2019_07_02.kmz

2. American Astronomical Society Solar Eclipse Glossaryhttps://eclipse.aas.org/eclipse-america/eclipse-glossary

3. Observation of ozone concentration during the solar eclipse

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Partial Solar Eclipse on Solar Radiation Intensity;2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3