Potential of Using Medium Electric Vehicle Fleet in a Commercial Enterprise Transport in Germany on the Basis of Real-World GPS Data

Author:

Pietracho Robert,Wenge ChristophORCID,Balischewski StephanORCID,Lombardi PioORCID,Komarnicki Przemyslaw,Kasprzyk LeszekORCID,Burzyński DamianORCID

Abstract

The intensive electrification of the automotive sector means that the energy system must be able to adapt to the current market situation. The increase in energy demand is a major factor associated with electric vehicles. The study analyzed the operation of a grid-connected facility operating a vehicle fleet providing transport services in the region Halle/Saale, Germany. Measurement data were used in the analysis, including global positioning system data of the vehicles and technical data, including average fuel consumption on a given route section, daily load demand of the industrial facility, and energy generation from photovoltaics. This paper shows the impact of using a battery electric vehicles (BEVs) fleet in the load distribution for the industrial facility considered. The NEDC energy consumption profile for the Nissan e-NV200 were used in this study. Furthermore, the paper presented simulation results allowing one to determine the usage potential, energy demand, and consumption of EVs using real data, reliably representing the processes related to EV daily use. The measurement data were captured using available specialized equipment: Dako-Key (GPS data), PV power generation (Siemens 7KM PAC4200), and load (Janitza UMG 604-Pro) in September, 2018. On this basis, it is possible to identify the effects and variations in load on the power grid during the replacement of combustion vehicle fleets used currently by EVs for the provision of transport services. Three models were presented, making it possible to calculate changes in energy demand for each scenario. In the first model, EVs were charged exclusively from the distribution network. In the second, the energy generation from a renewable source was considered and the possibility of compensating the energy demand of the vehicles from this source was demonstrated. In the third model, the daily load profile and the period of maximum load in the electricity grid were considered. The results are presented in graphical and tabular form. Finally, the potential of using an EV fleet to increase the functionality of a modern industry object was determined and discussed. Based on data for the adopted scenarios, electrification of transport can increase demand for energy by 40.9% for individual enterprises. The electrification of the automotive sector will increase the instantaneous energy demand of businesses, forcing the integration of renewable energy sources during designing new invests.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference67 articles.

1. Power system stability analysis under increasing penetration of photovoltaic power plants with synchronous power controllers

2. Technical impacts of high penetration levels of wind power on power system stability

3. Electromobility in Germany https://www.statista.com/study/82582/electromobility-in-germany/

4. Elektromobilität Und Sektorenkopplung;Komarnicki,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3