Comparison of Optimized and Conventional Models of Passive Solar Greenhouse—Case Study: The Indoor Air Temperature, Irradiation, and Energy Demand

Author:

Mohammadi Saleh,Khalife EsmailORCID,Kaveh MohammadORCID,Sayyah Amir Hosein Afkari,Nikbakht Ali Mohammad,Szymanek MariuszORCID,Dziwulski JacekORCID

Abstract

This study was carried out to optimize a computational model of a new underground passive solar greenhouse to improve thermal performance, storage, and saving of heat solar energy. Optimized and conventional passive solar greenhouse were compared in regards of indoor air temperature, irradiation, and energy demand. Six different materials were used in the conventional model. In addition, TRNSYS software was employed to determine heat demand and irradiation in the greenhouse. The results showed that the annual total heating requirement in the optimized model was 30% lower than a conventional passive solar system. In addition, the resulting average air temperature in the optimized model ranged from −4 to 33.1 °C in the four days of cloud, snow, and sun. The average air temperature in the conventional passive solar greenhouse ranged from −8.4 to 24.7 °C. The maximum monthly heating requirement was 796 MJ/m2 for the Wtype87 model (100-mm lightweight concrete block) and the minimum value was 190 MJ/m2 for the Wtype45 model (50-mm insulation with 200-mm clay tile) in a conventional passive solar greenhouse while the monthly heating requirement estimated 126 MJ/m2 for the optimized greenhouse model. The predictability of the TRNSYS model was calculated with a coefficient of determination (R2) of 95.95%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3