Approach to an Emulation Model to Evaluate the Behavior and Impact of Microgrids in Isolated Communities

Author:

Paredes Carlos M.ORCID,Bayona Andrés F.,Martínez Diego,Crespo Alfons,González ApolinarORCID,Simo JoséORCID

Abstract

In microgrid projects, social ownership involves aspects beyond their operation that may compromise the sustainability of the system. For this reason, the development of analysis methods to assess the feasibility and impact during the design stages of these solutions is of growing interest. Recent studies have proposed methods that allow an individual analysis of technological components and social behaviors. However, a complete evaluation of the performance and the impact of these projects should allow the simultaneous evaluation of the behavior of these subsystems, allowing the analysis of their interactions and effects in a dynamic way. Accordingly, this paper presents simulation and emulation models to evaluate the impact of a microgrid in isolated communities. These models contemplate sublevels that consider the energetic, automation and computational aspects in the microgrids and a multi-agent system (MAS) that is used to study the environmental and economic impact of the microgrid through the evolution of certain indicators. The socio-technological interdependence in the operation of the isolated microgrid is analyzed through the integration of the microgrid emulation platform with the MAS. Our approach includes a comprehensive study of the performance of these projects in specific communities, in order to contribute to the design and implementation, considering the technological, economic, environmental, and social impacts.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3