Abstract
The present study shows the effects of environmental conditions (atmospheric temperature, pressure and relative humidity) due to altitude changes on performance, fuel consumption and emissions in a naturally aspirated diesel engine. Due to changes in altitude, the atmospheric conditions are altered, mainly the air density, associated to hydrostatic pressure, temperature profile and humidity and relative nitrogen/oxygen ratio, thus modifying the engine intake conditions. The study considers changes in altitude from sea level to 2500 m above sea level, which are representative of the orographic conditions in Ecuador. As a main part of this research, a parametric study of variation of atmospheric temperature, pressure and relative humidity is carried out in AVL BOOST™, showing the effects on mean effective pressure, fuel consumption and specific pollutant emissions (CO2, NOx, CO and soot). The study considers effects at regional level (change from an altitude to another) and local level (changes in the atmospheric conditions due to local anticyclone or storm, temperature and humidity). The quantitative effects are expressed in the form of sensitivity coefficients, e.g., relative change in an engine output variable due to the change in atmospheric pressure, temperature or humidity. In addition, several global correlations have been obtained to provide analytical expressions to summarize all results obtained, showing the separate effect of pressure and temperature on each engine performance variable.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献