Improving Daily Streamflow Forecasting Using Deep Belief Net-Work Based on Flow Regime Recognition

Author:

Shen JianmingORCID,Zou Lei,Dong Yi,Xiao Shuai,Zhao Yanjun,Liu Chengjian

Abstract

Streamflow forecasting is of great significance for water resources planning and management. In recent years, numerous data-driven models have been widely used for streamflow forecasting. However, the traditional single data-driven model ignores the utilization of different streamflow regimes. This study proposed an integrated framework for daily streamflow forecasting based on the regime recognition of flow sequences. The framework integrates self-organizing maps (SOM) for identifying streamflow sub-sequences, the random forests (RF) algorithm to select input variables for different streamflow sub-sequences, and a deep belief network (DBN) for establishing complex relationships between the selected input variables and streamflows for different sub-sequences. Specifically, the integrated framework was applied to forecast daily streamflow at the Xiantao hydrological station in the Hanjiang River Basin, China. The results show that the developed integrated framework has higher streamflow prediction accuracy than the single data-driven model (i.e., the DBN model in this study), with Nash efficiency coefficient (NSE) of 0.91/0.81 and coefficient of determination (R2) of 0.93/0.89 for the integrated framework/DBN model during the validation period, respectively. Additionally, the prediction accuracy of the peak flood was also improved. The relative error of the peak flood derived from the integrated framework was reduced by 4.6%, compared with the single DBN model. Overall, the constructed integration framework, considering the complex characteristic of different flow regimes, could improve the accuracy for daily streamflow forecasting.

Funder

This research was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3