C, N, and P Mass Balances in the Bottom Seawater–Surface Sediment Interface in the Reducing Environment due to Anoxic Water of Gamak Bay, Korea

Author:

Jeong HuihoORCID,Kang YoonjaORCID,Cho Hyeonseo

Abstract

Current mass balances of C, N, and P were estimated using a model (Fluxin = Fluxout + ΔFlux) from Gamak Bay, Korea, in August 2017, where eutrophication and reducing conditions are prevalent. To examine the current fluxes of particulate organic carbon (POC), nitrogen (PON), and phosphorus (POP), sinking and re-floating sediment traps were deployed, a sediment oxygen demand (SOD) chamber experiment and ex-situ nutrient incubation experiment were conducted, and Fick’s first law of diffusion was applied. The principal component analysis and cluster analysis were performed to identify the three groups of water masses based on the characteristics of the bay, including the effects of the reducing environment due to the anoxic water mass using 14 bottom water quality parameters. In the reducing environment (sampling point GA4), the SOD20 flux was 3047.2 mg O2/m2/d. Additionally, the net sinking POC flux was 861.0 mg C/m2/d, while 131.8% of the net sinking POC flux (1134.5 mg C/m2/d) was removed toward the overlying water. This indicates that the organic matter that had been deposited was decomposed as a flux of 273.6 mg C/m2/d. The net sinking PON flux was 187.9 mg N/m2/d, whereas 15.8% of the net sinking PON flux was eluted, and 84.2% remained in the surface sediments. The dissolved inorganic nitrogen (DIN) elution flux from the surface sediments consisted of NH4+ elution (33.7 mg N/m2/d) and NOx− elution (−4.1 mg N/m2/d) fluxes. Despite the net sinking POP flux being 26.0 mg P/m2/d, the 47.7 mg P/m2/d of DIP elution flux (179.5% of the net sinking POP flux) was eluted to the overlying water. Similar to C mass balance, the additional elution flux occurred. Therefore, severe eutrophication (16.5 of the Okaichi eutrophication index) with the lowest N:P ratio (2.6) in GA4 was noted. This indicates that not only the freshly exported organic matter to the surface sediments but also the biochemical processes under anoxic conditions played an essential role as a remarkable nutrient source–particularly P–for eutrophication in Gamak Bay, Korea.

Funder

National Institute of Fisheries Science

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3