Abstract
Partial discharge (PD) is a common phenomenon of insulation aging in air-insulated switchgear and will change the gas composition in the equipment. However, it is still a challenge to diagnose and identify the defect types of PD. This paper conducts enclosed experiments based on gas sensors to obtain the concentration data of the characteristic gases CO, NO2, and O3 under four typical defects. The random forest algorithm with grid search optimization is used for fault identification to explore a method of identifying defect types through gas concentration. The results show that the gases concentration variations do have statistical characteristics, and the RF algorithm can achieve high accuracy in prediction. The combination of a sensor and a machine learning algorithm provides the gas component analysis method a way to diagnose PD in an air-insulated switchgear.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献