Concise Historic Overview of Strain Sensors Used in the Monitoring of Civil Structures: The First One Hundred Years

Author:

Glisic BrankoORCID

Abstract

Strain is one of the most frequently monitored parameters in civil structural health monitoring (SHM) applications, and strain-based approaches were among the first to be explored and applied in SHM. There are multiple reasons why strain plays such an important role in SHM: strain is directly related to stress and deflection, which reflect structural performance, safety, and serviceability. Strain field anomalies are frequently indicators of unusual structural behaviors (e.g., damage or deterioration). Hence, the earliest concepts of strain sensing were explored in the mid-XIX century, the first effective strain sensor appeared in 1919, and the first onsite applications followed in the 1920′s. Today, one hundred years after the first developments, two generations of strain sensors, based on electrical and fiber-optic principles, firmly reached market maturity and established themselves as reliable tools applied in strain-based SHM. Along with sensor developments, the application methods evolved: the first generation of discrete sensors featured a short gauge length and provided a basis for local material monitoring; the second generation greatly extended the applicability and effectiveness of strain-based SHM by providing long gauge and one-dimensional (1D) distributed sensing, thus enabling global structural and integrity monitoring. Current research focuses on a third generation of strain sensors for two-dimensional (2D) distributed and quasi-distributed sensing, based on new advanced technologies. On the occasion of strain sensing centenary, and as an homage to all researchers, practitioners, and educators who contributed to strain-based SHM, this paper presents an overview of the first one hundred years of strain sensing technological progress, with the objective to identify relevant transformative milestones and indicate possible future research directions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference130 articles.

1. Elastomagnetic method of force measurement in prestressing steel;Jarosevic;Inz. Stavby,1996

2. Application of EM Stress Sensors in Large Steel Cables;Wang,2005

3. The vibrating wire method of measuring deformations;Davidenkoff;Proc. ASTM,1934

4. Loading History of Highway Bridges;Galambos;Natl. Acad. Sci. Natl. Res. Counc. Highw. Res. Rec.,1969

5. Monitoring of Stress, Strain and Displacement in and around a Vertical Pillar at Mount Isa Mine;Bridges;Natl. Conf. Publ. Inst. Eng. Aust.,1976

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3