The Impact of Underground Structures on Urban Flood Models

Author:

Hauser Martina1ORCID,Reinstaller Stefan2ORCID,Oberascher Martin1ORCID,Muschalla Dirk2ORCID,Kleidorfer Manfred1ORCID

Affiliation:

1. Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria

2. Institute of Urban Water Management and Landscape Water Engineering, Graz University of Technology, Stremayrgasse 10/1, 8010 Graz, Austria

Abstract

Owing to climate change, heavy rainfall events have increased in recent years, often resulting in urban flooding. Urban flood models usually consider buildings to be closed obstacles, which is not the case in reality. To address this research gap, an existing 1D/2D model was extended with underground structures. The underground structures were located using site visits, Google Earth, and information provided by the city administration. Control strategies were used to represent partially open doors or tilted windows. The model was simulated with three measured rainfall events in three different scenarios. Scenarios with underground structures resulted in small storage volumes in the structures and a slightly less flooded area on the surface. The assumptions made were analysed using sensitivity analysis. Varying the number and location of underground structures resulted in small variations in the stored volume and surface flood volume. The sensitivity analysis also showed that the thresholds for height and velocity had a large impact, whereas the opening percentage did not influence the number of buildings affected. The conclusion of the study is that the inclusion of underground structures has little effect on the predicted flooded areas but can be useful in quantifying the water depth in potentially vulnerable buildings.

Funder

Computational Hydraulics International

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3