Abstract
We investigated the chemical properties of precipitation and litter fall, and their effects on soil chemistry, in a coastal forest consisting of pure Pinus thunbergii stands, Pinus-dominated stands with broadleaf trees in the understory, mixed stands of Pinus and evergreen broadleaf trees, and evergreen broadleaf stands. Throughfall pH in the pure Pinus stand was significantly lower than those in the other three stands, and the soil in the pure Pinus stand was determined to be acidic (pH = ca. 5.0). In Pinus-dominated stands with broadleaf species in the understory, precipitation had a neutralizing effect in the foliage of broadleaf species in the understory of the Pinus stand and the pH levels of their surface mineral soil were significantly higher than those in the pure Pinus stand. The soil pH level was low in the pure Pinus stand, and then increased with an increasing dominance of broadleaf species in the understory. The soil pH was lowered with an increasing dominance of broadleaf species in the canopy layer. A litter layer consisting of decomposable litter of broadleaf species with low C/N ratio acidified precipitation that was deposited as throughfall on the litter surface. Nitrates in the soil-extracted water from the mixed stand and from the evergreen broadleaf stand were significantly higher than the nitrates of stands with high dominance of Pinus. Higher nitrogen flux in the mixed stand and in the evergreen broadleaf stand, as well as a lower C/N ratio of the litter of broadleaf species, accelerated nitrogen accumulation in the soil in stands with high broadleaf species dominance in the canopy compared to the Pinus-dominated stand. Thus, the accumulation of nitrogen in the soil through litter fall is a possible factor that promotes succession from Pinus stands to evergreen broadleaf stands.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献