Novel Ensembles of Deep Learning Neural Network and Statistical Learning for Flash-Flood Susceptibility Mapping

Author:

Costache RomulusORCID,Ngo Phuong Thao ThiORCID,Bui Dieu TienORCID

Abstract

This study aimed to assess flash-flood susceptibility using a new hybridization approach of Deep Neural Network (DNN), Analytical Hierarchy Process (AHP), and Frequency Ratio (FR). A catchment area in south-eastern Romania was selected for this proposed approach. In this regard, a geospatial database of the flood with 178 flood locations and with 10 flash-flood predictors was prepared and used for this proposed approach. AHP and FR were used for processing and coding the predictors into a numeric format, whereas DNN, which is a powerful and state-of-the-art probabilistic machine leaning, was employed to build an inference flash-flood model. The reliability of the models was verified with the help of Receiver Operating Characteristic (ROC) Curve, Area Under Curve (AUC), and several statistical measures. The result shows that the two proposed ensemble models, DNN-AHP and DNN-FR, are capable of predicting future flash-flood areas with accuracy higher than 92%; therefore, they are a new tool for flash-flood studies.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3