Discovery of a Novel Species of Trichomonasvirus in the Human Parasite Trichomonas vaginalis Using Transcriptome Mining

Author:

Manny Austin12ORCID,Hetzel Carrie12,Mizani Arshan13,Nibert Max12

Affiliation:

1. Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA

2. Program in Virology, Division of Medical Sciences, Graduate School of Arts & Sciences, Harvard University, Cambridge, MA 02138, USA

3. Department of Biology, Boston University, Boston, MA 02215, USA

Abstract

Trichomonas vaginalis is the most common non-viral cause of sexually transmitted infections globally. Infection by this protozoan parasite results in the clinical syndrome trichomoniasis, which manifests as an inflammatory disease with acute and chronic consequences. Half or more isolates of this parasite are themselves infected with one or more dsRNA viruses that can exacerbate the inflammatory syndrome. At least four distinct viruses have been identified in T. vaginalis to date, constituting species Trichomonas vaginalis virus 1 through Trichomonas vaginalis virus 4 in genus Trichomonasvirus. Despite the global prevalence of these viruses, few complete coding sequences have been reported. We conducted viral sequence mining in publicly available transcriptomes across 60 RNA-Seq accessions representing at least 13 distinct T. vaginalis isolates. The results led to sequence assemblies for 27 novel trichomonasvirus strains across all four recognized species. Using a strategy of de novo sequence assembly followed by taxonomic classification, we additionally discovered six strains of a newly identified fifth species, for which we propose the name Trichomonas vaginalis virus 5, also in genus Trichomonasvirus. These additional strains exhibit high sequence identity to each other, but low sequence identity to strains of the other four species. Phylogenetic analyses corroborate the species-level designations. These results substantially increase the number of trichomonasvirus genome sequences and demonstrate the utility of mining publicly available transcriptomes for virus discovery in a critical human pathogen.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3