A Timestamp-Independent Haptic–Visual Synchronization Method for Haptic-Based Interaction System

Author:

Xu Yiwen,Huang Liangtao,Zhao Tiesong,Fang Ying,Lin LiqunORCID

Abstract

The booming haptic data significantly improve the users’ immersion during multimedia interaction. As a result, the study of a Haptic-based Interaction System has attracted the attention of the multimedia community. To construct such a system, a challenging task is the synchronization of multiple sensorial signals that is critical to the user experience. Despite audio-visual synchronization efforts, there is still a lack of a haptic-aware multimedia synchronization model. In this work, we propose a timestamp-independent synchronization for haptic–visual signal transmission. First, we exploit the sequential correlations during delivery and playback of a haptic–visual communication system. Second, we develop a key sample extraction of haptic signals based on the force feedback characteristics and a key frame extraction of visual signals based on deep-object detection. Third, we combine the key samples and frames to synchronize the corresponding haptic–visual signals. Without timestamps in the signal flow, the proposed method is still effective and more robust in complicated network conditions. Subjective evaluation also shows a significant improvement of user experience with the proposed method.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Realizing the Tactile Internet: Haptic Communications over Next Generation 5G Cellular Networks

2. Toward Haptic Communications Over the 5G Tactile Internet

3. Haptic Communication: Toward 5G Tactile Internet;Qiao;Proceedings of the 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC),2020

4. Haptic Codecs for the Tactile Internet

5. Error Resilience of Haptic Data in Interactive Systems;Xu;Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP),2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3