Affiliation:
1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
Abstract
Within the context of smart transportation and new infrastructure, Vehicle-to-Everything (V2X) communication has entered a new stage, introducing the concept of holographic intersection. This concept requires roadside sensors to achieve collaborative perception, collaborative decision-making, and control. To meet the high-level requirements of V2X, it is essential to obtain precise, rapid, and accurate roadside information data. This study proposes an automated vehicle distance detection and warning scheme based on camera video streams. It utilizes edge computing units for intelligent processing and employs neural network models for object recognition. Distance estimation is performed based on the principle of similar triangles, providing safety recommendations. Experimental validation shows that this scheme can achieve centimeter-level distance detection accuracy, enhancing traffic safety. This approach has the potential to become a crucial tool in the field of traffic safety, providing intersection traffic target information for intelligent connected vehicles (ICVs) and autonomous vehicles, thereby enabling V2X driving at holographic intersections.
Funder
National Key Technologies Research and Development Program of China
National Natural Science Foundation of China
Reference26 articles.
1. A Survey of Deep Learning Applications to Autonomous Vehicle Control;Kuutti;IEEE Trans. Intell. Transp. Syst.,2021
2. Evolutionary V2X Technologies Toward the Internet of Vehicles: Challenges and Opportunities;Zhou;Proc. IEEE,2020
3. A systematic literature review of vehicular connectivity and V2X communications: Technical aspects and new challenges;Souri;Int. J. Commun. Syst.,2024
4. Vehicle-to-everything (V2X) in the autonomous vehicles domain—A technical review of communication, sensor, and AI technologies for road user safety;Yusuf;Transp. Res. Interdiscip. Perspect.,2024
5. Li, S., and Yoon, H.S. (2023). Vehicle localization in 3D world coordinates using single camera at traffic intersection. Sensors, 23.