Multi-Focus Image Fusion Using Focal Area Extraction in a Large Quantity of Microscopic Images

Author:

Lee Jiyoung,Jang SeunghyunORCID,Lee JungbinORCID,Kim TaehanORCID,Kim Seonghan,Seo Jongbum,Kim Ki Hean,Yang SejungORCID

Abstract

The non-invasive examination of conjunctival goblet cells using a microscope is a novel procedure for the diagnosis of ocular surface diseases. However, it is difficult to generate an all-in-focus image due to the curvature of the eyes and the limited focal depth of the microscope. The microscope acquires multiple images with the axial translation of focus, and the image stack must be processed. Thus, we propose a multi-focus image fusion method to generate an all-in-focus image from multiple microscopic images. First, a bandpass filter is applied to the source images and the focus areas are extracted using Laplacian transformation and thresholding with a morphological operation. Next, a self-adjusting guided filter is applied for the natural connections between local focus images. A window-size-updating method is adopted in the guided filter to reduce the number of parameters. This paper presents a novel algorithm that can operate for a large quantity of images (10 or more) and obtain an all-in-focus image. To quantitatively evaluate the proposed method, two different types of evaluation metrics are used: “full-reference” and “no-reference”. The experimental results demonstrate that this algorithm is robust to noise and capable of preserving local focus information through focal area extraction. Additionally, the proposed method outperforms state-of-the-art approaches in terms of both visual effects and image quality assessments.

Funder

Institute of Information & Communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Normalization Gradient-Based Autofocusing Algorithm for Industrial Measurement;2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2022-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3