Integrated Transcriptome and Biochemical Analysis Provides New Insights into the Leaf Color Change in Acer fabri

Author:

Liu Guohua1,Gu Heng2,Cai Hongyu1,Guo Congcong1ORCID,Chen Ying3,Wang Lianggui2ORCID,Chen Gongwei1

Affiliation:

1. Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China

2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China

3. Liyang Comprehensive Agricultural Technology Extension Center, Liyang 213311, China

Abstract

Acer fabri is a widely distributed ornamental tree with colorful leaves and high ornamental value. Its young leaves change from red to red and green until turning fully green. To understand the mechanism of leaf color change, transcriptome sequencing and pigment content determination were performed in three stages during the leaf color change of A. fabri. In total, 53,550 genes, including 838 transcription factors (TFs), were identified by transcriptome sequencing. In addition, the results of orthogonal partial least squares-discriminant analysis (OPLS-DA) of three pigments in the three stages of leaf color development suggested that carotenoids played a major role in the process of leaf color change from red to red-green, whereas anthocyanins played an important role in the process of leaf color change from red to green. Based on weighted gene co-expression network analysis (WGCNA), Af0034384 (HSFB2A), Af0051627 (NMT1), and Af0052541 (THY-1) were selected as hub genes from characteristic modules with significant correlation between carotenoids and anthocyanins. The results of gene network regulation maps and real-time fluorescence quantitative PCR (qRT-PCR) showed that Af0010511 (NAC100) upregulated the expression of Af0034384 (HSFB2A), leading to an increase in carotenoid content and the gradual greening of leaves during the transition from red to green. However, during the transition from red to green leaves, Af0033232 (NAC83) and Af0049421 (WRKY24) downregulated the expression of Af0051627 (NMT1) and Af0052541 (THY-1), respectively, leading to a decrease in anthocyanin content and the complete greening of leaves. These results could provide new ideas for studying the molecular mechanism of leaf color change in A. fabri and other species.

Funder

Jiangsu Forestry Bureau

National Forestry and Grass Administration

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3