A New Method to Calibrate Cardinal Temperatures for Eucalyptus Plantation

Author:

Queiroz Túlio Barroso1ORCID,Montes Cristian Rodrigo2ORCID,Campoe Otávio Camargo3ORCID

Affiliation:

1. Faculdade de Ciências Agronômicas, Universidade Estadual Paulista-UNESP, Botucatu 18610-034, SP, Brazil

2. Warnell School of Forestry and Natural Resources, University of Georgia-UGA, Athens, GA 30602-2152, USA

3. Departamento de Ciências Florestais, Universidade Federal de Lavras-UFLA, Lavras 37200-000, MG, Brazil

Abstract

Developing a good understanding of the interactions between forest plantation growth and climate is essential for predicting the impact of climate change on terrestrial ecosystems and for assessing the adaptation and vulnerability of tree species. One such interaction, the response in growth rate of a forest stand to changes in temperature, may be described mathematically. Some models that run on monthly time steps assume a yearly optimum, minimum, and maximum temperature for simplicity, which may not represent well to actual forest growth. Here, we developed a finer-resolution methodology that encompasses monthly growth rates and temperature limits to calibrate the parameters for an envelope curve in Eucalyptus plantations in South America. Several polynomial curves were tested to determine temperature patterns, and their yearly tree growth patterns demonstrated that responses to temperature differed by as much as 10 °C among seasons. The best curve was a second-degree polynomial curve, whose extreme values indicated the optimum temperature and whose real roots limited the minimum and maximum temperatures for growth. This polynomial was fitted every month to describe yearly changes in optimum, maximum, and minimum temperatures. When fitted to annual data, it determined 7 °C, 19 °C, and 31 °C as the minimum, optimum, and maximum temperatures for tree growth, respectively. The monthly model predictions indicated that the minimum, optimum, and maximum temperatures lay between 8 °C and 16 °C, 18 °C and 22 °C, and 27 °C and 30 °C, respectively. These monthly temperature ranges can improve the estimation of productivity in process-based models. Our results contribute to the understanding of tree growth dynamics and its relationship to changes in temperature. Accurate ranges of temperature can be used to improve productivity predictions in new expanding planting regions with no previous information or to suggest a regionalization for potential species.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3