Genome-Wide Identification and Analysis of the DGAT Gene Family in Lindera glauca and Expression Analysis during Fruit Development Stages

Author:

Bai Xue1,Yang Yongyi1,Xie Lun1,Li Qingqing1,Xiong Biao12

Affiliation:

1. College of Tea Science, Guizhou University, Guiyang 550025, China

2. Department of Botany, College of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract

Diacylglycerol acyltransferase (DGAT) is a vital and sole rate-limiting enzyme involved in triacylglycerol synthesis. Identifying DGAT genes in Lindera glauca is essential for studying lipid metabolism pathways and developing novel oil crops with enhanced value. In the study reported in this paper, 15 LgDGAT family genes were first obtained from the L. glauca genome via bioinformatics analysis. We comprehensively analyzed their chromosome distribution, gene structure, subcellular localization, promoter prediction, phylogenetic relationships, tissue-specific expression, and expression patterns during different stages of fruit development. Our findings revealed that LgDGATs can be classified into DGAT1, DGAT2, DGAT3, and WSD (wax ester synthase/acyl-CoA: diacylglycerol acyltransferase) subfamilies distributed across chromosome 3, 5, 6, 8 and 11. LgDGATs’ promoter region showed abundant elements linked to the light response and plant hormone response. Forms of LgDGAT1, LgDGAT2, and LgDGAT3 were primarily expressed in the early and late phases of fruit development, indicating their potential function in the growth and development of L. glauca, particularly in oil accumulation. Conversely, LgWSDs exhibited predominant expression in stems and leaves. This paper elucidates the gene structure and expression patterns of LgDGATs, providing a theoretical foundation for understanding the functionality of DGAT genes in Lindera species.

Funder

National Natural Science Foundation of China

National Guidance of Local Science and Technology Development Fund of China

Guizhou Science and Technology Plan Project

Young Talents Program of Guizhou Provincial Department of Education

Cultivation Project of Guizhou University

Guizhou Provincial Postgraduate Research Fund

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3