The Classification of Movement in Infants for the Autonomous Monitoring of Neurological Development

Author:

Turner Alexander1ORCID,Hayes Stephen2,Sharkey Don3ORCID

Affiliation:

1. Department of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK

2. Department of Engineering, Nottingham Trent University, Nottingham NG4 2EA, UK

3. Department of Medicine, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

Neurodevelopmental delay following extremely preterm birth or birth asphyxia is common but diagnosis is often delayed as early milder signs are not recognised by parents or clinicians. Early interventions have been shown to improve outcomes. Automation of diagnosis and monitoring of neurological disorders using non-invasive, cost effective methods within a patient’s home could improve accessibility to testing. Furthermore, said testing could be conducted over a longer period, enabling greater confidence in diagnoses, due to increased data availability. This work proposes a new method to assess the movements in children. Twelve parent and infant participants were recruited (children aged between 3 and 12 months). Approximately 25 min 2D video recordings of the infants organically playing with toys were captured. A combination of deep learning and 2D pose estimation algorithms were used to classify the movements in relation to the children’s dexterity and position when interacting with a toy. The results demonstrate the possibility of capturing and classifying children’s complexity of movements when interacting with toys as well as their posture. Such classifications and the movement features could assist practitioners to accurately diagnose impaired or delayed movement development in a timely fashion as well as facilitating treatment monitoring.

Funder

National Institute of Health Research (NIHR) Children and Young People MedTech Co-operative

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3