Microwave-Driven Plasma-Mediated Methane Cracking: Product Carbon Characterization

Author:

Vander Wal Randy,Sengupta ArupanandaORCID,Musselman Evan,Skoptsov George

Abstract

Methane is the primary industrial H2 source, with the vast majority produced by steam reforming of methane—a highly CO2- and water-intensive process. Alternatives to steam reforming, such as microwave-driven plasma-mediated methane decomposition, offer benefits of no water consumption and zero CO2 process emissions while also producing solid carbon formed by pyrolytic reactions and aided by a plasma reactive environment. The economic viability of pyrolytic methane decomposition as a hydrogen source will depend upon the commercial applications of the solid carbon product—which, in turn, will depend upon its physical and chemical characteristics. This study focuses on material characterization of the solid carbon (secondary) product. Characterization by high-resolution transmission electron microscopy reveals forms ranging from graphitic to amorphous. Thermogravimetric analyses reveal three forms by their differing oxidative reactivity, while X-ray diffraction analyses support the different crystalline forms as suggested by Thermogravimetric analysis. Plasma perturbation of the radical pool, elevating radical temperatures and boosting concentrations, is proposed as altering the reaction paths towards solid carbon formation, resulting in the different sp2 forms.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3