Abstract
Water-soluble and reductive carbon quantum dots (CQDs) were fabricated by the hydrothermal carbonization of chitosan. Acting as a reducing agent and stabilizer, the as-prepared CQDs were further used to synthesize gold nanoparticles (AuNPs). This synthetic process was carried out in aqueous solution, which was absolutely “green”. Furthermore, the CQDs/AuNPs composite was used to detect iodine ions by the colorimetric method. A color change from pink to colorless was observed with the constant addition of I− ions, accompanied by a decrease in the absorbance of the CQDs/AuNPs composite. According to the absorbance change, a favorable linear relationship was obtained between ΔA and I− concentration in the range of 20–140 μM and 140–400 μM. The detection limit of iodide ions, depending on the 3δ/slope, was estimated to be 2.3 μM, indicating high sensitivity to the determination of iodide. More importantly, it also showed good selectivity toward I− over other anion ions, and was used for the analysis of salt samples. Moreover, TEM results indicated that I− ions induced the aggregation of CQDs/AuNPs, resulting in changes in color and absorbance.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献