Abstract
We present a theory of thermal conduction in a transition metal dichalcogenide nanocomposite structure with rough interfaces that accounts for the anisotropic conductivities of the host, the insert and the interface regions. The host and insert conductivities are calculated using a semi ab-initio method. The effects of specularity in phonon interface scattering and the thermal boundary resistance is incorporated through linking a phonon wavevector dependent specular scattering parameter to the average height of surface inhomogeneities, and the conductivity of the composite is calculated by employing an extension of a modified effective medium approach. Our work for spherical inserts of WS 2 in MoS 2 predicts that the effects of specular scattering due to surface roughness is more pronounced for inserts smaller than 100 nm, even at volume fractions of the order of 0.05.
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献