Taste-Masked Flucloxacillin Powder Part 2: Formulation Optimisation Using the Mixture Design Approach and Storage Stability

Author:

Yoo Okhee1ORCID,Salman Sam23ORCID,von Ungern-Sternberg Britta S.345ORCID,Lim Lee Yong1ORCID

Affiliation:

1. Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia

2. Clinical Pharmacology and Toxicology Unit, PathWest Laboratory Medicine, Perth, WA 6009, Australia

3. Medical School, The University of Western Australia, Perth, WA 6009, Australia

4. Perioperative Medicine Team, Perioperative Care Program, Telethon Kids Institute, Perth, WA 6009, Australia

5. Department of Anaesthesia and Pain Medicine, Perth Children’s Hospital, Perth, WA 6009, Australia

Abstract

Flucloxacillin is prescribed to treat skin infections but its highly bitter taste is poorly tolerated in children. This work describes the application of the D-optimal mixture experimental design to identify the optimal component ratio of flucloxacillin, Eudragit EPO and palmitic acid to prepare flucloxacillin taste-masked microparticles that would be stable to storage and would inhibit flucloxacillin release in the oral cavity while facilitating the total release of the flucloxacillin load in the lower gastrointestinal tract (GIT). The model predicted ratio was found to be very close to the stoichiometric equimolar component ratio, which supported our hypothesis that the ionic interactions among flucloxacillin, Eudragit EPO and palmitic acid underscore the polyelectrolyte complex formation in the flucloxacillin taste-masked microparticles. The excipient–drug interactions showed protective effects on the microparticle storage stability and minimised flucloxacillin release at 2 min in dissolution medium. These interactions had less influence on flucloxacillin release in the dissolution medium at 60 min. Storage temperature and relative humidity significantly affected the chemical stability of the microparticles. At the preferred storage conditions of ambient temperature under reduced RH of 23%, over 90% of the baseline drug load was retained in the microparticles at 12 months of storage.

Funder

Australian Government Research Training Program (RTP) Scholarship

University of Western Australia

Stan Perron Charitable Foundation People grant

Stan Perron Charitable Foundation

National Health and Medical Research Council Investigator Grant

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3