Abstract
Recently, significant breakthroughs have been made in exploring northeast China’s shale part of the Q formation. On-site observation reveals that the appearance of oil at the wellhead is only seen a long time after fracturing in many wells. Strong coupling between phase behavior and relative permeability curves in the reservoir with the near-critical point initial condition restricts the efficient development of this kind of shale oil. A series of compositional models are constructed to address the issues to reveal the cause of the late oil breakthrough. Nanopore confinement is checked by including this phenomenon in the numerical model. Before the simulations, the work gives detailed descriptions of the geology and petrophysics background of the target formation. Simulation results show that the delayed oil breakthrough is highly related to the coexistence of three phases at the beginning of production, which is not seen in common reservoirs. The extended period of purely water production complicates subsurface flow behavior and hinders the increase of medium- and long-term oil production. Early-time production behavior in such reservoirs is associated with the gas–liquid relative permeability curves and initial water saturation. Oil–water relative permeability curves affect the water-cut behavior depending on wetting properties. The potential oil-wet property slows down oil breakthroughs. Conceivably, purely gas and water phases exist due to the nanopore confinement of crude oil phase behavior; thus, the late oil production is barely related to the gas–liquid relative permeability curves.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction