Embedded, Real-Time, and Distributed Traveling Wave Fault Location Method Using Graph Convolutional Neural Networks

Author:

Jiménez-Aparicio MiguelORCID,Hernández-Alvidrez Javier,Montoya Armando Y.ORCID,Reno Matthew J.ORCID

Abstract

This work proposes and develops an implementation of a fault location method to provide a fast and resilient protection scheme for power distribution systems. The method analyzes the transient dynamics of traveling waves (TWs) to generate features using the discrete wavelet transform (DWT), which are then used to train several graph convolutional network (GCN) models. Faults are simulated in the IEEE 34-node system, which is divided into three protection zones (PZs). The goal is to identify the PZ in which the fault occurs. The GCN models create a distributed protection scheme, as all nodes are able to retrieve a prediction. Given that message-passing between nodes occurs both during training and in the execution of the model, the resiliency of such schemes to communication losses was analyzed and demonstrated. One of the models, which only uses voltage measurements, was implemented on a Texas Instruments F28379D development board. The execution times were monitored to assess the speed of the protection scheme. It is shown that the proposed method can be executed in approximately a millisecond, which is comparable to existing TW protection in the transmission system. For experimental purposes, a DWT-based detection method is employed. A design of a setup to playback TWs using two development boards is also addressed.

Funder

Sandia National Laboratories

U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference46 articles.

1. Internet of Things-Enabled Devices and the Grid;U.S. Department of Energy,2017

2. Grid Modernization: Seamless Integration of Protection, Optimization and Control

3. Advanced Distribution Protection for High Penetration of Distributed Energy Resources (DER),2019

4. Accurate and economical traveling-wave fault locating without communications

5. IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3