Discussion on the Feasibility of Deep Peak Regulation for Ultra-Supercritical Circulating Fluidized Bed Boiler

Author:

Xin Shengwei,Wang Hu,Li Jianbo,Wang Gang,Wang Quanhai,Cao Peiqing,Zhang Peng,Lu Xiaofeng

Abstract

In order to meet the flexibility operation needs of coal-fired units under the goal of carbon peak and carbon neutralization, it is imperative for circulating fluidized bed (CFB) units to participate in deep peak regulation. By systematically summarizing deep peak regulation operation practice of existing SC and subcritical-parameter-levels CFB units, the feasibility of deep peak regulation technology of an ultra-supercritical (USC) CFB unit under development and being built is analyzed and demonstrated; meanwhile, the deep peak regulation capacity of the boiler is also predicted. The results show that by analyzing the structural characteristics and design performance of the USC-CFB boiler, for technical problems such as stable combustion under low load, hydrodynamic safety, denitration performance under wide load, and rapid boiler load change rate existing in deep peak regulation, technical measures were implemented by selecting advanced boiler furnace type, adopting good design technology of the secondary rising water wall and uniformity design of bed temperature and bed pressure, strengthening the reducing atmosphere inside the furnace, improving the performance of wear-resistant refractory materials, quickly controlling the furnace bed material stock under variable load, optimizing the control strategy of CFB unit, and so on. The boiler achieved good operation characteristics and good deep peak regulation performance, and the pollutant emissions can steadily achieve ultra-low emission standards. When the USC-CFB unit participates in deep peak regulation, the minimum stable combustion load of the boiler can reach 20~30% BMCR, and a boiler load change rate under 30% BMCR or above could reach 1.5~2% BMCR/min, while that below 30% BMCR could reach 1% BMCR/min. The research results can provide references for the deep peak regulation of in-service supercritical (SC) CFB units and design optimization of similar USC-CFB units.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference15 articles.

1. Road to low-carbon transformation of coal power in China: A review of biomass co-firing policies and technologies for coal power abroad and its inspiration on biomass utilization;Mao;Clean Coal Technol.,2022

2. Analysis on current situation of low calorific value coal resources and application of circulating fluidized bed power generation;Lv;China Coal,2021

3. Conceptual design of a simplified 660MW USC-circulating fluidized bed boiler;Lyu;Proc. CSEE,2014

4. The up-to-date development and future of circulating fluidized bed combustion technology;Yue;Electr. Power,2016

5. 600MW SC-CFB unit deep peak-regulating operation technology;Peng;Energy Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3