Implication Linkage among Microfacies, Diagenesis, and Reservoir Properties of Sandstones: A Case Study of Dongying Formation, Nanpu Sag, Bohai Bay Basin

Author:

Yu ZhenghongORCID,Chen Si,Xie Weidong,Zhao Shu’e,Ma Jianghao,Gong Tianhao

Abstract

The reservoir quality of sandstones is significantly impacted and transformed by sedimentation and diagenesis. It is necessary to clarify the internal relationship among them to precisely predict the sweet reservoir. In this study, five types of sedimentary microfacies are recognized through core observation and logging data: submerged distributary channel (fan delta), submerged interdistributary bay, submerged distributary channel (braided delta), distal bar, and turbidite fan. The major diagenetic processes, including compaction, cementation, and dissolution, have been analyzed based on petrography, scanning electron microscopy, and X-Ray diffraction. The dominant diagenetic cement includes calcite, smectite, kaolinite, illite, and I/S mixed-layer minerals, with small quantities of chlorite, pyrite, siderite, feldspar, and quartz cement. The reservoir quality is best in the submerged distributary channel (fan delta) sandstones, followed by submerged distributary channel (braided delta). Submerged interdistributary bay, distal bar, and turbidite fan are of poor reservoir quality. The grain size is the primary reservoir quality controlling factor, highly affected by sedimentary microfacies. Subsequent controls are diagenetic processes such as mechanical compaction, clay minerals formation, grain replacement, and dissolution that collectively influence the porosity and permeability.

Funder

Fundamental Research Funds for the Central Universities, China University of Geosciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3