Abstract
Although there are many studies on the Jurassic source rocks in the northern margin of the Qaidam Basin, the characteristics of biomarkers and products with the same source rock in different evolutionary stages are still not well understood. Such an understanding is essential for accurately estimating oil and gas resources. In order to explore the hydrocarbon-generation potential of high-quality source rocks of the Middle Jurassic and the evolution of liquid hydrocarbons and biomarkers, we carried out simulation research (under hydrous conditions) at various temperatures (250, 300, 350, 400 and 450 °C) with the mudstone of the Yu 33 well in the Yuka Sag. The results revealed that the “oil window” of the Middle Jurassic source rocks in the Yuka area was 300 °C (simulation temperature, Ro = 0.84%), but this was not the peak of hydrocarbon expulsion, which was gradually reached and stabilized above 350 °C. Overall, the concentration of alkanes and aromatics increased with temperature; although the concentration of alkanes was complex in the low evolutionary stages, temperature (simulated maturity) was still the main factor controlling the change in alkanes and aromatics. Among the maturity parameters of biomarkers, the ratio of ∑tricyclic terpanes/∑hopanes was the most effective parameter for indicating the maturity evolution of the Yuka area, but others were complicated by the increasing temperature. Therefore, when evaluating maturity, the applicability of other parameters needed to be fully considered. The results obtained offer new insights in the research on liquid-hydrocarbon and biomarker evolution of the Middle Jurassic source rocks in the Yuka Sag of the Qaidam Basin.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference65 articles.
1. Influence of mature and diagenesis of organic matter in the formation of petroleum;Tissot;AAPG Bull.,1974
2. Generation of Oil-Like Pyrolyzates from Organic-Rich Shales
3. Time-temperature relation in oil genesis;Connan;AAPG Bull.,1974
4. Time and temperature in petroleum formation: Application of lopatin’s method to petroleum exploration;Waples;AAPG Bull.,1980
5. Comparison between extracts from natural and artificial maturation series of Mahakam delta coals